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Abstract. Explicit solutions of a linear rate equation lead to improved understanding of 
fragmenlatian with discrete and continuous mass loss. Discrete mass loss provides a general 
expression for the overall mass 10% rate which accounts for mass loss in the shattering 
regime, where runaway fragmentation for small panicles producer a phase of zero-mass 
panicles. An explicit solution far the recession regime, where small panicles lose large 
fractionsoftheir mass to surface recession,shows that the total number ofpaniclesincreases 
with time until the typical panicles become small enough to lose all of their mass (and 
disappear) rather than to break. A general series solution i s  presented for fragmentation 
with continuous and discrete mass loss. A proof that continuous mass loss precludes 
dynamic scaling i s  presented. 

1. Introduction 

Motivated b y  applications such as polymer breakup, combustion, erosion, explosion 
and  comminution (grinding), rate equations for fragmenting systems describe the time 
evolution of the particle mass distribution based on a particle-mass-dependent frag- 
mentation rate and a distribution of daughter particles spawned by fragmentation. A 
linear rate equation describing polymer breakup due  to degradation of bonds has 
received considerable attention (Ziff and  McGrady 1985, 1986, McGrady and  Ziff 
1987, Cheng and  Redner 1988). A nonlinear rate equation describing fragmentation 
due  to repeated collisions between particles has also been developed (Cheng and 
Redner 1988). These rate equations are similar in spirit to the well-known nonlinear 
Smoluchowski equation for coagulation (Meesters and Ernst 1987, Mulholland and  
Baum 1980). Even though the spatial homogeneity inherent i n  rate equations is 
sometimes obeyed only approximately i n  experiments, rate equations have nevertheless 
added considerable insight to the overall understanding of fragmentation. Compared 
with numerical simulations (Sahimi and  Tsotsis 1987, 1988, Kerstein and Edwards 
1987), the advantage of the rate equation approach is its generality: general forms for 
fragmentation rates and  daughter distributions allow for solutions which span a 
spectrum of particle morphologies, external conditions, and fragmentation processes, 
whereas numerical simulations typically require specific particle morphologies and 
externai conditions. 

A rate equation has recently been developed (Edwards et a/  1990, Cai et a/ 1991) 
to study fragmentation for processes which do  not conserve solid mass such as  
combustion, oxidation, dissolution and explosion. This rate equation includes both ( i )  
continuous loss of solid mass (and the attendant surface recession) at particle surfaces 
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due to the action of some continuous external process such as combustion or  dissolution 
and (ii) discreie loss of mass during effectively instantaneous explosions, the mass of 
the exploded material accounting for the lost mass. Continuous mass loss during 
combustion of solid porous particles can lead to fragmentation when combustion 
occurs deep within the pores, thus widening the pores and eventually causing loss of 
connectivity of the particles. Experiments indicate that hundreds of such fragmentation 
events might occur during the combustion of a single coal char particle (Dunn-Rankin 
and Kerstein 1987, 1988, Sarofim er a /  1977, Sundback et a/ 1985, Quann and Sarofim 
1986). Discrete mass loss can lead to fragmentation during combustion of two-phase 
heterogeneous solids with isolated inclusions of an explosive phase imbedded within 
a slower-burning phase. When an explosive inclusion in a particle is exposed by surface 
recession, the hot gases created by the resulting explosion can break the remainder of 
the particle into pieces. Since continuous and discrete mass loss involve no collisions 
between particles and depend only on the interaction between each particle and its 
(assumed homogeneous) environment, the rate equation for fragmentation with mass 
loss is linear and reduces to the rate equation for polymer breakup in the limit of zero 
mass loss. 

The goal of this paper is to understand implications of discrete and continuous 
mass loss for linear fragmentation. Our inclusion of discrete mass loss leads to a general 
expression for the rate of change of the overall mass of the finite-mass particles. This 
expression is valid even in the shattering regime, where runaway fragmentation for 
small particles produces a phase of zero-mass particles. A new approach using a 
Laplace transform yields a general family of explicit solutions for discrete mass loss, 
continuous values of the homogeneity index a, and arbitrary initial conditions. A new 
explicit solution including both continuous and discrete mass loss illuminates the 
competition between the reduction in the total number of particles due to particles 
disappearing as they lose all of their mass and the increase in the total number of 
particles due to fragmentation. A general series solution is obtained. A proof that 
continuous mass loss violates scaling strengthens previous arguments (Edwards er a/ 
1990, Cai er a/ 1991). 

2. Rate equation 

The linear rate equation (Edwards et a/ 1990) 

describes the evolution of the particle mass distribution n ( x ,  t )  for a system of particles 
undergoing fragmentation with mass loss, with a fragmentation rate a ( x ) ,  a distribution 
&(x)y) of daughter particle masses x spawned by the fragmentation of a parent particle 
of mass y, and a continuous mass loss rate c(x). The terms on the right-hand side of 
(1) describe, from left to right, the reduction in the number of particles in the mass 
range [x: x + d x ]  due to the fragmentation of particles in this range, the increase in 
the number of particles in the range due to fragmentation of larger particles, and the 
change in the number of particles in the range due to continuous mass loss. The 
external consumptive process and the irrelevance of particle collisions ensure that the 
rate equation is linear. 
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A normalization condition for 6(xly), 

J' - 1; x6(xly) dx = i y  (2) 

allows for discrete mass loss during fragmentation events; the difference between the 
mass y of a parent particle just before it breaks and the sum 16 xb(x1y) dx of the 
masses of the  resulting daughter particles specifies the mass i y  lost during the frag- 
mentation event, with an  ensemble-averaged discrete loss fraction (Edwards er al 1990) 
satisfying O s i S  1. Although i may depend on y, the present work focuses on the 
implications of constant 1. For two-phase heterogeneous particles, this choice corre- 
sponds to a distribution of explosive inclusions for which the average fraction i of 
the overall particle mass contained in a particular explosive inclusion just before its 
ignition is independent of the particle mass. A useful general relation for the time rate 
of change of the total mass M ( f )  =I: xn(x ,  I) d x  follows by multiplying ( 1 )  by x and 
by integrating: 

[x ; \ (~ (x )+c (x ) ln (x ,  f )  dx. (3) 

As will beseen, this expression accounts for the overall mass of thefinite-mass particles. 
The  familiar rate equation for (mass conserving) polymer degradation (McCrady and  
Ziff 1987, Cheng and Redner 1988) follows from (1) by setting c ( x )  = 0. The correspond- 
ing normalization condition follows from (2) with i =O.  

Using dimensionless variables, we consider the power-law rates a ( x )  =x", 6(xly) = 
g(y)x", and c ( x ) = c x y  with € 2 0 .  As discussed by Edwards er a/  (1990) and Cai et 
a1 (1991), these power-law rates describe a wide spectrum of conditions for different 
values of a, y ,  Y and E. In particular, the conditions U = y - a - 1 < 0,  U = 0 and u t  0 
yield the recession, scaling and fragmentation regimes: in the recession regime, small 
particles lose large fractions of their masses to surface recession between fragmentation 
events and eventually disappear. In the fragmentation regime, small particles lose very 
little mass between fragmentation events and  continue to break into smaller and smaller 
particles. The scaling regime, where the rate equation is scale invariant, is the boundary 
between these two regimes. The coefficient E measures the importance of mass loss 
relative to fragmentation. The normalization condition (equation (2)) implies that 
g(y)=2q5/yZ'+' with 4 = ( 1 - i ) ( u + 2 ) / 2  and v > - 2 ,  so that (1) becomes 

a ~- - - x " n ( x ,  f ) + 2 4 x "  y " - " - ' n ( y ,  r )  dy+e-[xYn(x ,  f)] .  (4) 1.: dx 
Jn(x, I )  

a t  

The ensemble-averaged number of daughter particles produced by a fragmentation 
event is given by .#==I; 6(x iy )  d x  = 2 4 / ( v +  1) for Y >  - I ,  whereas #=a for -2 < U S  

- 1  (McGrady and Ziff 1987). The requirement that fragmentation events produce two 
or  more fragments, Ja2, immediately yields the upper limits of the allowed ranges 
-1 < v s  - 2 i / ( l  +X) and (1 - i ) / 2 <  4 s ( 1  - i ) / ( l  +i), whereas ,?<CC implies the 
lower limits. 

It is helpful to transform according to x =  U"' and n(x, r j = x ' w ( u ,  I ) ,  so that 

wherep  = a/@, S = 1 + ( y -  1 ) / 4 , ~  = €4 a n d p  = [v+i(u+2)]/2q5 satisfies - 1  < @ s o .  
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3. Explicit solutions for discrete mass loss 

To obtain a general family of explicit solutions in the absence of continuous mass 
loss, we set E = 0 in ( 5 ) :  

Compared with the rate equation for polymer degradation (McGrady and  Ziff 1987), 
the essential new feature of this equation is a non-zero discrete mass loss fraction h 
implicit in p = 2(1 -x)- '(u+2)- 'a,  as required by the normalization condition (2 ) .  
Our  direct-solution method involving a Laplace transform, which is distinct from the 
trial-solution method employed by Ziff and  McGrady (1985), allows us to obtain 
solutions for the continuous spectrum of values, -CC < a <OD, and for arbitrary initial 
conditions. Our  method is also easily generalized for other time-independent forms of 
a ( x )  and b(xly), and may prove useful in obtaining solutions including continuous 
mass loss. 

In appendix A, we use the Laplace transform method t o  solve ( 6 ) .  For m =  
( 1  - h ) (  v + 2 ) / a  > 0, e = 0, and arbitrary initial conditions, the resulting general solution 
of (4) is 

(7) 1 y-"n(y,  O)F,( 1 - m, 2, f ( x "  - y " ) )  dy" 

where F,(a,  b, x) is the confluent hypergeometric function. When m is a positive integer, 
(7) reduces to 

y-"n(y,  O ) L ~ ~ , ( f ( x " - y " ) )  dy" ] (8) 

where 
m m! ( - ,y)J- '  

L"',(x) = 1 
i = , ( m - j ) ! j !  ( j - I ) !  

is the associated Laguerre polynomial. For v = = 0 corresponding to binary breakup 
with p=2,  (8) reduces to the result obtained by Ziff and  McGrady (1985). 

For the simple case m = 1 [ a  = ( 1  -i)( v+2)] with a monodisperse initial distribu- 
tion n ( x , O ) = S ( x - / ) ,  (8) yields 

n ( x ,  t ) = e - * " ' [ 6 ( x - / ) + a t / " - ' ' - ' x " ]  (9) 

for x S  I + &  with E + O ,  and n ( x ,  f )  = O  otherwise. The corresponding total mass is 

As f + OD, we have 

Hence, discrete mass loss yields a total mass which decreases as a power of t as t + a, 
with an exponent determined by the discrete mass loss fraction i. When i = O ,  both 
( I O )  and (11) reduce to the result for mass-conserving fragmentation, M ( f )  = 1. 
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By using Kummer's identity F,(Q,  b, x )  = e"F,(b - a, b, -x)  (Arfken 1985, section 
13.61, we can extend the general solution (7) to the case m < O  and E = O ;  

When m is a negative integer, (12)  reduces to 

n ( x ,  t)=e-x"n(x,O)- IX" J, e-""'y-"n(y, O)L'l,_,(r(y" - x " ) )  dye. 

n ( x , O ) = s ( x - l ) ,  (13) reduces to 

r m  
(13) 

For m = -2 (a = - ( l b h ) ( u + 2 ) / 2 < 0 )  and the monodisperse initial distribution 

n ( x ,  1 )  =exp(-tl"){ S(x - I) + (1  -i)( V + ~ ) I X " / " - " - ' [  1 -(r' -x")t/z]} (14) 

for x S / .  This distribution yields a total initial number of particles N(O)= 
1; n(x, 0) dx = 1 consistent with monodisperse initial conditions. The condition 
-(1 -A)/2 < 01 + v +  1 S 0 (which follows from the allowable range for U) requires a 
diverging total number of particles 

for f > O  with a finite term N r ( f ) .  The corresponding total mass of the finite-mass 
particles 

M ( t )  = I  exp(-tl") ] + ( I  - X ) t l " + - - T  ~ 

I + A  2 (16) 

decreases monotonically with time. These results reflect the runaway fragmentation 
rates a ( x )  = x m  (a < 0) for small particles associated with the 'shattering' regime, where 
the total mass M ( f )  of the finite-mass particles decreases with time as finite-mass 
particles are reduced to infinite numbers N ( f )  of infinitesimal-mass particles. In the 
limit X + 0, the total mass 

1 (17) 

agrees with the corresponding result obrained by McGrady and Ziff (1987) and the 
total number of particles 

M ( f ) =  I e x p ( - f / ~ i ~ " , ' ) [ 1 + 1 1 - i ~ " i 2 + f t ' , ~ " - '  

v + 2  
X"'2/r -O+ N d t )  (18) 

N ( t )  /-2-3"/Zf2 e-?l- ' -" /z  

U 

can be obtained by direct integration of their n ( x ,  1 ) .  Note that whereas (16) reflects 
both discrete mass loss (associated with non-zero i) and shattering mass loss (associated 
with the reduction of finite-mass particles to infinite numbers of infinitesimal-mass 
particles), (17) reflects only shattering mass loss, the quantity I -  M ( t )  giving the 
amount of mass embodied in the infinitesimal-mass particles. 

!nc!udlxg disc:e!e mi:: !ess ~cceur.!s fer z!! miss !ess ix!cding shz!!ering mass 
loss in ( 3 ) ,  d M / d f  = -i J ; x " + ' n ( x ,  t )  dx; integrating this equation using (14) yields 
a finite mass loss rate 

d M / d l =  -1 -2A - 1"t - -  - [ l + 1  2 l + A  
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which is consistent with the time derivative of (16). Equation (3)  is valid even in the 
limit i - 0 ,  where shattering requires the integral 

1 -  
) xdn(x, i )  dx+-*-I,',-'-3""/2 exp(-rl-l-"/2 1"- 2 

to diverge as  I-' in order to produce a finite mass loss rate d M / d /  which agrees with 
(17). Thus, introducing discrete mass loss renders the appropriate integrals convergent 
and thereby accounts for shattering mass loss in a natural way; the limit X-0 is 
properly taken at the end of the calculation. Discrete models of fragmentation in which 
particle masses are restricted to multiples of a smallest mass A can also he used to 
account for shattering mass loss in the limit A - 0  (Ziff and McCrady 1986). Equation 
(3) can be further confirmed by considering ( 1 3 )  with monodisperse initial conditions. 

4. Recession regime behaviour 

In  appendix B, we obtain a series solution of (5) including both discrete and continuous 
mass loss. The coefficients of the series are obtained recursively based on the initial 
condition w(u, 0). 

Ihespecial case a = 1, y = 0, i = 0 and v = 0 illustrates the behaviour in the recession 
regime, where negative U = y - U - I = -2 implies that small particles typically lose all 
of their mass without breaking. The recession regime is relevant when pore sizes have 
a minimum and for high temperatures and/or low oxygen concentrations relevant to 
diffusion-limited oxidation. For this special case, (84) implies that the x dependence 
of all coefficients of the series is e-". As a result, n, (x ,  1 )  must have the form 
n,(x,  f)=e"r+"'k(r), which we substitute into ( I )  to obtain 

-. 

n,(x ,  I ) = ( ] +  i / s ) ' e x p [ ~ ( s + r ) x - 2 ~ ' ~ ( i t s ) ' ] .  (19) 

n ( x ,  i )  = A ( s ) ( l +  r / ~ ) ~  exp[-(s i  r ) x - - 2 - ' ~ ( i + s ) ~ ]  ds. (20) 

Because of the linearity of the rate equation, the general solution is 

- "  r.: 
1"" 

Expanding ( I  + t i s ) '  and using the identities 

n ( x , O ) =  A(s)e-2-'"ie-""ds 

and 

yields an explicit solution 

(21) I n ( &  O i + j -  n ( y , O ) P r +  i2(y-5) ldy 1 2-h*<' - t ,  n (x, 1 )  = e 
5 

governing the evolution of the particle mass distribution for an arbitrary initial distribu- 
tion, with [ = x t  €1. When E = O ,  (21) reduces to the expression for mass-conserved 
fragmentation given by Ziff and McCrady (1985). Equation (21) illustrates that con- 
tinuous mass loss is relevant at large t (through the factor e'-'"') when the particles 
are typically small. 
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As an explicit illustrative example, we consider the initial distribution n(x, O ) =  
2(x+k)-’, for which (21) gives 

+ 2f  + exp[-2-’tt2- [ ct ::+ k (ef + x +  k)2 (Ef  + x +  k)’ 
n ( x , f ) =  . t x ] .  

The evolution o f  the total mass and the total number of particles in the system are 
given by 

M ( l ) = -  (23) k +  ~t 

and 

1 t N ( t ) =  [ ( k + t t ) ‘ + k i c l ]  ~ ’ 

Thus, k = l /h fc l ,  where MO is the total initial mass of the system. Without mass loss 
( E = O ) ,  the total mass M ( t ) =  MO is constant, the total number N(f) = N,+f/k is a 
linearly increasing function of h e ,  and n ( x ,  1)‘ f2e“‘ is a scaling solution at long 
times when the particle masses are small compared with k. With mass loss (t # 0), the 
total mass o f  the  system is a monotonically decreasing function of time, as expected, 
whereas the evolution of the total number of particles depends on the mass loss rate 
t. For large mass loss rates € 2  k2/2, the total number decreases monotonically with 
time. For small mass loss rates t < k2/2, the total number increases up to a critical 
time t , ,  after which it decreases monotonically with time. The crossover from increasing 
to decreasing total number of particles for small loss rates signals the time at which 
typical particles become small enough to lose all of their mass rather than to break. 
Although this behaviour for small and large mass loss rates has been shown rigorously 
only for this special case, it is expected that general initial distributions and exponent 
values in the recession regime ( u < O )  will also reflect this behaviour. 

5. Scaling violation with continuous mass loss 

Scale-invariant ‘scaling’ solutions for coagulation hold interest because of evidence 
(Meesters and Ernst 1987, Mulholland and  Baum 1980, Family et a/ 1986) that large 
classes of general solutions tend to scaling solutions after initial transients decay away. 
For polymer breakup, the scaling solution has been studied by Cheng and Redner 
(1988). For fragmentation with discrete mass loss, exact and asymptotic scaling sol- 
utions are given in Cai et a /  1991. In Edwards et a1 (1990), analysis of the moment 
equations leads to an argument that continuous mass loss violates scaling. Here, we 
present a stronger argument that continuous mass loss violates scaling based on the 
original differential equation. 

Invariance of ( 5 )  under the scale transformation U = su*, t = s‘f* and w (  U, f )  = 
w ( s u * , s * ~ * ) = s ~ w * ( u * ,  f*)requiresS=p+l,~=--p,andaformforscalingsolutions,  

w ( u ,  1) = r-”flf(u%). (25) 

Letting I =  pvupf, substituting (25), and  differentiating reduces (5 )  to the hyper- 
geometric equation 
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with 

For large 5, the two independent solutions of (26) are 

f,(s)= t - "F (a ,  a - c +  I ,  a -  b + l ,  5-l) 
f2(.$) = 5-hF(b, b -  c +  I ,  b - a+ I ,  5-l) 

where F(a,  b, c, x)  is the hypergeometric function. Substituting the total mass 

(29) M(1)=- 2 (Bn)-2/P1-w+21/P j"- 5 ' / P f ( 5 )  d5"P 
( u + 2 )  

into (3), we have 

which determines the value of $. 
As 5- 00, we have fi(5) + e-" and fi({) + 5-h, so that the convergence of 

requires 

a > 2 / p +  I b > 2/p+ 1 ( 3 1 )  
respectively for the two independent solutions. Substituting (27) into (31) yields the 
inequalities 

2 2 112 [ 1 + ( 6 - 2 ~ ) ~ + ( 1 + ~ )  n 1 > 1 + ( 3 - / * ) n  
(32) 

The allowed ranges -1  <psO and 7 > O  disagree with the second inequality in ( 3 2 ) .  
Squaring the first inequality implies that p >  1, which also disagrees with the allowed 
range of p. Thus, the scaling solutions f,(5) andf2(f)  cannot be physical solutions of 
(26), implying that continuous mass loss violates scaling. 

-[I + ( 6 - 2 p ) v  +( 1 +p)2q2]"2> 1+(3  -p )n .  

6. Conclusions 

Explicit and series solutions help to illuminate the physics of fragmentation with mass 
loss. Discrete mass loss allows for a general relation for the mass loss rate which 
includes shattering mass loss in a natural way, thereby improving the understanding 
of shattering mass loss. Shown to be useful for power-law forms of the fragmentation 
rate a ( x )  and daughter distribution b ( x l y ) ,  our general solution method using a Laplace 
transform may be useful for other time-independent forms of these kernels. An explicit 
solution illustrates the general behaviour in the recession regime, where small particles 
lose large fractions of their mass to surface recession before fragmentation or annihi- 
lation. 
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Appendix A. Laplace transform solution 

By applying the Laplace transform 
r .n I 

W(u, s) = J e-"w(u, t) d t  

and by differentiating (6) with respect to  U, we obtain 

" 

J W(u,  s) dw(u,O) 
( S + l I ' )  +(p+Z)u"'W(u, s) =- 

JU d u  

The solution of this first-order linear inhomogeneous differential equation can be 
written down immediately (see Arfken 1985. section 8.2, for example): 

where g(s, U)= C ( s ) / ( s + u p ) ) " " ' ,  C ( s )  is constant of integration depending on s, 
and m = 2/p. 

For m > 0, we can employ 

* T ( n + l )  a"-'bk 
* = " r ( n + l - k )  k !  

( a + b ) " =  

and 

to reduce (A3) to 

where r ( x )  =j: t'-' e-' dt is the gamma function. The inverse Laplace transform gives 
I I ' ( u , I ) = e - " Y ' [ w ( u , O ) + m r  ca w ( u , 0 ) ~ , ( I - m , 2 , r ( u " - " ' ) ) d v p ]  

T ( a + k )  r ( b )  x k  
*=U r ( a )  T ( b + k )  k !  F , ( a , b , x ) =  1 

is the confluent hypergeometric function and P-' represents the inverse Laplace 
transform. 
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The quantity 9 - ' ( g ( s ,  U)) is independent of the form of the initial distribution 
w ( u ,  0). For the initial distribution w ( u , O ) = O ,  the solution w ( u ,  t ) = O  requires that 
Y ' ( g ( s , u ) ) = O ,  hence 9 - ' ( g ( s , u ) ) = O  generally. Thus, for m = ( l - h ) ( v + 2 ) / u > O ,  
E = 0 and arbitrary initial conditions, the general solution of (4) is 

n ( x , O ) + m t x "  y-"n(y,O)F,( I -m,2, t ( x m  - y " ) )  dy" ] . (A8) I:' 
Appendix B. General series solution 

The solution of (6) has the form 

w ( u ,  t )  = e-""lf(u, t )  (91) 
for m > O  and discrete mass loss only ( E  =O), with f (U, t )  specified by (A7). We now 
use (BI )  as an assumed form for a general series solution which includes continuous 
mass loss. Substituting (Bl) into (5 )  and differentiating with respect to U, we obtain 

For the initial condition w(u, 0 )  = f ( u ,  0 )  =e-'"' with s 2 0 ,  (B2) can be solved by 
substituting the series expansion 

t k  
i = o  k! 

m 

.L(u,O= Z A,(u,s)- (83) 

equating like powers of t, and integrating over U. This procedure yields the recurrence 
relation 

A,+,(u, s ) = ( Z - k p )  u'-'A~(v, S)  d u + v  -2kpu6+'-'A k - l  ( u,s ) 

J "  

Because of the linearity of (S), the corresponding general series solution 
m m 

w ( u , t ) = e - " " '  1 B(s)A,(u,s)ds (B5) 
h=Ok. o 

reflects arbitrary initial conditions through B ( s )  which is determined by , y+im 

B ( s ) = -  w(u,O)e'"' dun. (B6)  

Thus, given arbitrary initial conditions w(u ,  0), (B5) gives the general solution for 
w ( u ,  /),with B(s)givenby(B6) andwithrecurrencerelationsforA,(u, s)givenby(B4). 

2711 I+ 
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